
& -A1l? 152 SPARSE C OLESK FACTORIZATION ON A LOC L-NEOEV 1 n '
NULTIPROCESSOR(U) OAK RIDGE NATIONAL LAS TN
A GEORGE ET AL. APR 66 ONRL-T-9962 AFOSR-TR-97-1572

WICLRSSIFIED RFOSR-ISS-5-SO3 F/0 12/6 Ut.

flItN IlllI8 .',
11111 111"5

....• ... 1.8

* , .- ,. S . ,S .S S.- S. S. . U. S • . . -. . . .U

~. -. g b', low

AD-A 187 152 __

'U11 I ILL W1 . 3RT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

2&. SECURITY CLASSIFICATION J% AUT. DISTRIBUTION /AVAILABILITY OF REPORT
DECLSSIFCATIN, DWNGR LApprOV(d f"Or ,0DtIliC -i.ease;

2b. distribut ion uni mited.

4. PERFORMING ORGANIZATION R UMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFOSR.TR. 8 1 572

6a. NAME OF PERFORMING ORGANIZATION |6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If apoicable)

Oak Ridge National Laboratory AFOSR/NM

6C. ADDRESS (City. State. and ZIPCode) 7b . EC. State., and ZIP Code)

Bldg 410
Oak Ridge, Tennessee 37831 BollingAFBD 20332-U49
a. NAME OF FUNDING/SPONSORING 6b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (if applicabe)

AFOSR NM A FOP -1 0 i I
State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
Bldg 410 ELEMENT NO. NO. NO. ACCESSION NO.
Boiling AFB DC 20332-6448 61102F 2304 D

11. TITLE (Include Security Classification)

Sparse Cholesky Factorization on a Local-Memory Multiprocessor

12. PERSONAL AUTHOR(S)

Alan George, Michael T. Heath, Joseph Liu .and Esmond N,
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Oay) S. PAGE COUNT

Final I FROM 101118T013Q187 April 1986 ,
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary ar'd identify by block number)
FIELD GROUP I SUB-GROUP

19 ABSTRACT (Continue on reverse if neceSSary and identfy by block number)
This article deals with the problem of factoring a large sparse positive definite matrix on a multiprocessor
system. The processors are assumed to have substantial local memory but no globally shared memory.
They communicate among themselves and with a host processor through message passing. Our primary
interest is in designing an algorithm which exploits parallelism, rather than in exploiting features of the
underlying topology of the hardware. However, part of our study is aimed at determining, for certain
sparse matrix problems. whether hardware based on the binary hypercube topology adequately supports
the communication requirements for such problems. Numerical results from experiments running on a
multiprocessor simulator are included.

20. ODISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
0-UNCLASSIFIED/UNLIMITED 0 SAME AS RPT [] OTIC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c.FEICE SYMBOL
Maj. John P. Thomas I ' - "i

00 FORM 1473, 84 MAR 83 APR edition may b* used untilexhautted. SECURITY CLASSIFICATION OF -HIS PAGE
All other editions are obsolete.

LZ 0

ORNL/TM-9962

Engineering Physics and Mathematics Division

Mathematical Sciences Section or r- N -

SPARSE CHOLESKY FACTORIZATION
ON A LOCAL-MEMORY MULTEPROCESSOR

Alan George
Michael T. Heath

Joseph Liu~
Esmond Ng

z-l

t Department of Computer Science
University of Waterloo 0

:Z7

X

Waterloo, Ontario. Canada N2L 3G1

tt Department of Computer Science
York University
Downsview. Ontario. Canada M3J 1P3

Date Published: April 1986

Research was supported by the Applied Mathematical
Sciences Research Program of the Office of Energy Research.
U.S. Department of Energy, by the U.S. Air Force Office of
Scientific Research under contract AFOSR-ISSA-85-00083.
and by the Canadian Natural Sciences and Engineering
Research Council under grants A8111 and A5509.

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
operated by

Martin Marietta Energy Systems. Inc.
for the

U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-840R21400

D -

Deprtmnt f CmpterScinceI-

UniverI4?,~~*.' 4~ ?4/~~ sity of ~ * Wateroo o * ~5S~ " S

AFOSR. 7-157 2
-

1572

Table of Contents

1. Introd uction .. 1

2. Sparse Cholesky Factorization ... 2

2.1. Dense Case: the Basic Algorithm .. 2

2.2. Parallel Sparse Column-Cholesky and the Effect of Ordering 4

3. Design and Im plem entation ... 8

4. Experim ents and Conclusions .. 10

5. R eferences ... 14

\WSPEC T/

NTI53 ,,i i i

N1 I

* t ! ' -5

SPARSE CHOLESKY FACTORIZATION
ON A LOCAL-MEMORY MULTIPROCESSOR

Alan George

Department of Computer Science
University of Waterloo

Waterloo. Ontario. Canada

Michael T. Heath

Mathematical Sciences Section
Oak Ridge National Laboratory

Oak Ridge. Tennessee

Joseph Liu

Department of Computer Science
York University

Downsview. Ontario. Canada

Esmond Ng

Mathematical Sciences Section
Oak Ridge National Laboratory

Oak Ridge. Tennessee

ABSTRACT

This article deals with the problem of factoring a large sparse positive definite matrix on a
multiprocessor system. The processors are assumed to have substantial local memory but
no globally shared memory. They communicate among themselves and with a host
processor through message passing. Our primary interest is in designing an algorithm
which exploits parallelism, rather than in exploiting features of the underlying topology of
the hardware. However, part of our study is aimed at determining, for certain sparse
matrix problems. whether hardware based on the binary hypercube topology adequately
supports the communication requirements for such problems. Numerical results from
experiments running on a multiprocessor simulator are included.

Research was supported in part by the Applied Mathematical Sciences Research Program of the OMce of Ener-
gy Research, U.S. Department of Energy under contract DE-ACOS-840R21400, by the U.S. Air Force Ofce of
Scientiflic Research under contract AFOSR-ISSA-85-00083 with Martin Marietta Energy Systems Inc., and by
the Canadian Natural Sciences and Engineering Research Council under grants A8111 and A5509.

1. Introduction

This article deals with the problem of factoring a large sparse positive definite matrix
A on a multiprocessor system. It is assumed that the system supports message passing
among individual processors. and that each processor has a substantial amount of local
memory. We assume also that there is no globally shared memory. These assumptions
are appropriate for a number of recent commercially available machines. such as the
binary hypercube multiprocessors marketed by Ametek. Intel and NCUBE corporations. In
[8]. a parallel algorithm was developed for solving dense positive definite systems on such
machines. so this article can be regarded as a sequel to that work. in which the sparsity of
the problem is addressed and exploited.

The process of solving large sparse positive definite systems typically involves four

distinct steps:

1. (Ordering) Find a good ordering P for A. That is. a permutation matrix P so
that PAPT has a sparse Cholesky factor L. This is usually referred to as the

ordering problem.

2. (Symbolic factorization) Determine the structure of the Cholesky factor L of

PAPr. and set up a data structure for this factor.

3. (Numerical factorization) Place the elements of A into the data structure, and

then compute L.

4. (Triangular solution) Using the computed L. solve the triangular systems Ly =Pb.
L T z=y. and then set x =Pr z.

The problems of implementing an ordering algorithm and performing the symbolic
factorization procedure on a multiprocessor machine are major projects that will be
considered in a subsequent article. In this paper we develop and test a parallel algorithm

for step 3 only.

Before proceeding with the description and details of the algorithm, some general
remarks about the design and implementation of parallel algorithms should be made.
First. it should be kept in mind that the objective is speed-up. That is. given a p-processor
machine, we would like to solve our problem in time that is as close as possible to a factor
of p less than that needed to solve the same problem on a single processor version of the
machine, using the best serial algorithm available. Of course in the latter case we assume
that the single processor machine has adequate memory, presumably much more than the
amount available to a single processor in the multiprocessor configuration.

There is a tendency to focus on processor utilization in studying parallel algorithms.

However, while high processor utilization is a necessary condition for good speed-up, it is
clearly not sufficient; the processors have to be doing useful work. Thus, in order to
achieve our objective, it is necessary to be able to distribute the computation
approximately uniformly across the processors. to identify sufficient parallelism so that
most of the computations can be performed simultaneously. and to reduce the amount of
communication among the processors.

Let us assume that -e are able to achieve this distribution. Except in unusual
circumstances, some comr.nication among the processors will be required during the

computation. This leads us to an important point about communication traffic.

U

-2-

Ideally, every processor in the system should be able to send a message directly to
any other processor. However. for large p. economics make building machines with such a
capability infeasible, so most local-memory multiprocessors provide physical
communication links among only a few nearest neighbors in some geometric layout.
(Common topologies include the ring. the two-dimensional regular grid and the binary
hypercube.) A consequence is that a message to be sent from processor i to processor j
may have to traverse several physical links, and be forwarded by processors along the
transmission path.

It is therefore useful to distinguish between logical and physical data traffic. By the
logical traffic from processor i to processor j. we mean the amount of data originated
from processor i that must be received and utilized by processor j. On the other hand.
we use physical traffic from i to j to refer to the total amount of data traffic that actually
flows on the physical link (assuming it exists) from processor i to j in the multiprocessor
network. If there is no direct link between processors i and j. the amount of physical
traffic will always be zero even if there is some logical data traffic between them. In this
case. data originated from processor i and required by processor j has to travel through
one or more intermediate processors in some transmission path before reaching j.

It is clear that logical traffic is determined by the way in which the total computation
has been distributed across the processors. and physical traffic further depends on the
underlying hardware topology and routing strategies. Loosely speaking, logical traffic is a
function of the algorithm only. while physical traffic is a function of both the algorithm
and the hardware.

An outline of the paper is as follows. In Section 2. we review the basic Cholesky
algorithm for the dense matrix case, and examine the effect of ordering for the sparse case.
Although we defer the discussion of a parallel algorithm for computing an ordering until a
later paper. the choice of the ordering can have a drastic effect on both the sparsity of the
triangular factor and the degree of parallelism that can be exploited in computing it. For
the numerical experiments reported in this paper. the ordering is computed by a standard
sequential algorithm. The design and implementation of the parallel algorithm for sparse
numerical factorization are presented in Section 3. and the results of our numerical
experiments in Section 4.

2. Sparse Cholesky Factorization

2.1. Dense Case the Basic Algorithm

We begin by providing a column-oriented version of the basic Cholesky factorization
algorithm, described in the following algorithmic form.

h!

-3-

for j :- 1 to n do
begin

fork :-ltoj-do
for i :- j to n do

aij :- aij - aik "aJlk

ajj aj
fork :-j+l ton do

akj :- akJ / ajj
end

It is shown in [9] that this form of Cholesky factorization. the so-called column-
Cholesky formulation, is particularly well suited to medium- to coarse-grain parallel
implementation. It was found to have the best combination of work-load balance and
overlapped execution in the outer loop sub-tasks. This version is implemented for
shared-memory multiprocessors in [9]. and for various local-memory architectures
supporting message passing in [8.13].

Following [9]. we let Tcol(j) be the task that computes the j-th column of the
Cholesky factor. Each such task consists of the following two types of subtasks:

1. cmod (j A) : modification of column j by column k (k <j):

2. cdiv (j) : division of column j by a scalar.

Thus. in terms of these sub-tasks, the basic algorithm can be expressed in the
following condensed form.

for j :- 1 to n do
begin

fork :- ltoj-do
cmod QjA

cdiv ()
end

We now consider the potential for parallelism in the above formulation of the
algorithm. We implicitly assume throughout this paper that the crnod and cdiv operations
are atomic in the sense that we do not attempt to exploit parallelism within them.
although such exploitation is clearly possible.

Note first that cdiv (j) cannot begin until cmod (Q A) has been completed for all
k < j, and column j can be used to modify subsequent columns only after cdiv (j) has
been completed. However, there is no restriction on the order in which the cmod
operations are executed. and cmrud operations for different columns can be performed
concurrently. For example. after cdiv(1) has completed. cmod (2,1) and cmod (3.1) could
execute in parallel. These precedence relations are depicted in Fig. 1.

-4-

cmod(j+l,j) cmod(j+2,j) cmod(n,j)

cdiv(j)

cmod(j,l) cmod(j,2) cod(jJ-1)

Fig. 1: Subtask precedence graph for column-Cholesky.

2.2. Parallel Sparse Column-Cholesky and the Effect of Ordering

The main difference between the sparse and dense versions of the algorithm stems
from the fact that for sparse A . column j may no longer need to be modified by all
columns k < j. Specifically. column j is modified only by columns k for which lJk ;d0.
and after cdiv (j) has been executed. column j needs to be made available only to tasks
Tcol (r) for which /$, 00. This can be understood easily by examining the basic form of

the algorithm displayed at the beginning of section 2.1. If ajk =0. it is obviously
unnecessary to execute the loop on i. since it has no effect.

Ideally, we would like to choose an ordering for the matrix A which achieves a
number of objectives. First. just as in the use of serial machines, we would like to
preserve sparsity and obtain a low arithmetic operation count. In addition, the ordering
should allow a high degree of parallelism, and allow the distribution of the computation
across the processors in a way that allows the parallelism to be exploited without
requiring an inordinate amount of communication.

Fortunately, these objectives turn out to be mutually complementary. In order to
gain insight into this problem. it is useful to introduce the notion of elimination trees for
sparse Cholesky factors [3.16].

Consider the structure of the Cholesky factor L. For each column j <n. if column
j has off-diagonal nonzeros. define yfj] by

)[j] = min{i I l, P0. i>j •

that is. y(j I is the row subscript of the first off-diagonal nonzero in column i of L. If
column j has no off-diagonal nonzero, we set v[j I = j. (Hence y[n]=n.)

We now define an elimination tree corresponding to the structure of L. The tree has

n nodes, labelled from 1 to n For each j. if y(j] >j. then node)l(j] is the parent of
node j in the elimination tree. and node j is one of possibly several child nodes of node
y[j]. We assume that the matrix A is irreducible, so that rt is the only node with

IZ

-5-

y[j]j and it is the root of the tree. Thus, for 1 <] <n, y[j] >j. (If A is reducible.

then the elimination tree defined above is actually a forest which consists of several trees.)

There is exactly one path from each node to the root of the tree. If node i lies on the path
from node j to the root, then node i is an ancestor of node j, and node j is a descendant
of node i.

An example to illustrate the notion of elimination trees is provided by the structure
of the Cholesky factor shown in Fig. 2. with the associated elimination tree being shown in
Fig. 3. Elimination trees have been used either implicitly or explicitly in numerous articles
dealing with sparse symmetric factorization [1.2,3.6.7,12,14,16,17,18,19,20]. In particular,
the paper [18] uses the elimination tree as a model to study the parallel sparse Cholesky
factorization algorithm in a shared-memory multiprocessor. In addition, Duff [2] is
exploring the use of elimination trees in the parallel implementation of multifrontal
methods.

x
I

_ = x x
xx

x xxx

Fig. 2: Structure of a Cholesky factor.

5

42

3

1

Fig. 3: The elimination tree associated with the Cholesky factor in Fig. 2.

The elimination tree provides precise information about the column dependencies.
Specifically. cdiv Gi) cannot be executed until cdiv Qj' has completed for all descendant
nodes j of node i.

The elimination tree has simple structure that can be economically represented using
-y. as shown in Fig. 4. Thus, the representation requires only a single vector of size n .

N. 1. le- J"* * *~~ * 4

~ .w4.~*I- - * 4 ~~* 4C

-6-

j 1 2 3 4 5 6
,[j] 3 5 4 5 6 6

Fig. 4: Computer representation of the tree of Fig. 3.

In order to see the role that elimination trees might play in identifying parallelism.
we now consider two different orderings of the same problem. and study their
corresponding elimination trees. Consider a 3 by 3 grid problem, where the 9 vertices of
the grid are numbered in some manner, and the associated matrix A has the property that
aij ;00 if and only if vertex i and vertex j are associated with the same small square in
the grid. Two different orderings of the grid are given in Fig. 5, the associated Cholesky
factors are displayed in Fig. 6. and their corresponding elimination trees are shown in Fig.
7.

Fig. 5: Two orderings of a 3 by 3 grid.

.1'l

x x
x x x

x x x
x x xx x

xx x xxxxx
xx x xxxxx

x x xxx xxxx
d xxxxx x x x xxxxx

x X x x x xx x xxxx

Fig. 6: Structure of the ('lesky factors for the orderings of Fig. 5.

%, %

'pp.
."

, 'p - . . . _ ., . ., , .. , . ,, , . . , , -. , 4 . ,* L._ -%,

-7-

9 7

8 6

7 5

4

2

* Fig. 7: The elimination trees associated with the matrices in Fig. 6.

* The elimination tree on the left is typical of those generated by orderings that are
good in the sense of yielding low fill and low operation counts. Its tree structure is short
and wide, and such trees and their associated orderings lend themselves well to parallel
computation. For example. it should be clear that Tcol(l). Tcol(2), TcoI(3), and Tcol(4)
can start immediately in parallel. Moreover, when they have completed execution. TcoI (5)

* and Tcci (6) may proceed independently. The remaining tasks are no different than those
for a dense matrix, and the findings in [8] apply equally well here.

On the other hand, the band-oriented ordering shown above is undesirable because it
imposes the same serial execution on the cdiv operations that is imposed in the dense case
(note, however, that even in the dense case, some cnw4 operations can still be carried out
concurrently 191). Moreover, the operation counts and fill-in are inferior to that of the
first ordering.

In the elimination tree, if node i and node j belong to the same level of the tree, it is
clear that the tasks TctlX'U) and Tco(j) can be performed independently so long as the
tasks associated with their descendant nodes have all been completed. In order to gain

* high processor utilization. it is therefore desirable to assign, if possible. nodes on the same
level of the tree to different processors. An overall task assignment scheme will then

e W, r

I-* ,,)a'A

-8-

correspond to assigning the Tcol(i) tasks to successive processors in a breadth-first
bottom-up manner from nodes of the elimination tree.

It should be pointed out that some of the practical fill-reducing orderings will
already order the nodes of the elimination tree in this desirable sequence. They include
the recent implementation of the minimum degree ordering using multiple elimination [15]
and a version of the nested dissection ordering [101. In such cases, the task assignment
scheme corresponds to the straightforward wrap-around assignment. where task Tcol (i)
will be assigned to the processor s. given by s = (i -1) mod p.

*- 3. Design and Implementation

In this section. we consider the design and implementation of a sparse Cholesky

factorization algorithm appropriate for a parallel multiprocessor with local memory. Let
A be the given n by n sparse symmetric positive definite matrix with Cholesky factor L.
We assume that the matrix has already been permuted by some fill-reducing ordering

appropriate for parallel elimination.

As before, we let Tcol (.) be the task of computing the j -th column of the sparse
Cholesky factor L. This task consists of the two types of subtasks: cmod(j,k) and
cdiv (j).

In the sparse case, the task Tcol () can be expressed in the following algorithmic

form:

for each k with nonzero 1, and j > k do
cmod ()

cdiv (j)

It should be clear that the number of cmod operations required in the task Tcol(j) is
given by the number of off-diagonal nonzeros in the j-th row of L. To facilitate our
discussion, we introduce the vector nmod [*]. where the value nmod [j] is the number of
column modifications cmod required in the execution of Tcol (j). This vector can be
obtained by simply counting the number of off-diagonal nonzeros in each row of L.

Consider the symmetric factorization of A in a given parallel message-passing
multiprocessor environment. Let p be the number of processors in the parallel machine.
We assume that an assignment of the column tasks Tcol(*) to the computational nodes of

the multiprocessor has been given. For definiteness, let map [* I be the mapping of these n

tasks into the p processors. That is. map (j I will be the processor that is responsible for
the performance of the task Tcoi(j), and hence the computation of column j of L. It
should be pointed out that the effect of task-to-processor assignment on load balancing
and communication cost can be studied by choosing different map [*] functions.

In the parallel environment, we further assume that there are two primitives: send
and await. Execution of a send does not cause the sending process to wait for a reply. On
the other hand. execution of an await causes the process executing it to be suspended until
the message is received. Mess, ges that arrive at the destination process before the
execution of the receiving await are placed in a queue until needed.

We shall now describe, in an algorithmic form, the work to be performed by the host
and node processors. Each node processor uses a multisend routine, which will be

discussed later in detail.

- ., .. -. -... • .-* ,* -* - "- .'.D. -" ; " - .'," "." " " " " ' ' - 7

-9-

HOST processor:

Determine the mapping function map [*]
for s :- 1 to p do /* broadcast map[*] */

send map [*] to processor s

Determine the nmod [.] function

for j :- 1 to n do
send column j of A and nmod [j] to processor map [j]

repeat n times do
await a column of L and store it into the data structure

NODE processor s:

await map [,] from the host
compute ncol (using map). the number of columns to be processed by processor s

/* obtain columns from the host and eliminate if possible */
repeat nco times do
begin

await a coiumn j of A and nmod (l from the host
if nmod[j] 0 then
begin

cdiv (j)
multisend (j. L.j)

end
end

ncol :- nc!d - number of columns received with zero nmnod

/* main loop: driven by the incoming columns */
while nwol > 0 do
begin

await a column of L, say L.o
for each offdiagonal nonzero ljt with map [j] - s do
begin

cmod(jA

nmod[j] :- nmod [j]-1
if nmod[j] - 0 then
begin

cdiv (j)
multisend (, L.j)
ncol -neol-I

end
end

end

It is clear that the host processor is merely responsible for the initiation of the tasks by
sending the relevant information to each node processor. and then for the collection of the

-10-
4'.

computed columns of the factor matrix L. In each node processor. a routine called
multisend is used. Its function is to send the column L.j to the host processor and also to

all the node processors that require this column for performing modifications. Specifically.

this routine can be formulated as follows.

Subroutine multisend (j. L.):

for each processor d such that for some i > j ; 0 and map[i] i d do
send L., to processor d

send L.j to the host

It should be emphasized that the routine multisend should only send one copy of the
column L4. to a processor even though the processor may use this column to modify more
than one column in this processor. Furthermore. the routing strategy in the distribution
of the column L,) to the processors concerned can be changed by simply coding a new

.4,' version of multisend.

There are a few points worth mentioning in the scheme for each node processor. As
soon as a column L., of L is completely formed. it is immediately sent to the other
processors that need this column. including the node processor that computed L,) if that
node processor also needs L.j. A node's sending messages to itself in such circumstances
makes the logic and programming much cleaner. This should not result in a significant
performance penalty in any reasonable multiprocessor design since it should involve
merely an internal movement of data. The immediate transmission of completely formed
columns allows an overlapping of column elimination and column input from the host in
the repeat loop in the algorithm. More importantly, by making columns of L
immediately available, this will reduce wait time on node processors.

Note also that the main loop is driven by the incoming columns of L. This implies
that the parallel algorithm is working at the granularity level of the subtasks cmod (j k)
and cdiv (j). rather than at the level of the tasks Tco (j). This is in direct contrast to the
serial implementation of the sparse Cholesky method (for example. SPARSPAK [11] or
YSMP [5]). where each Tcol(j) is executed and completed in succession.

Another important characteristic of this formulation is that it is independent of the
interconnection network topology. In other words, the parallel algorithm as formulated is
applicable to any parallel multiprocessor in a message-passing environment. For different
processor interconnections, it may be desirable to choose a different task-to-processor
mapping function map [* or a different message routing strategy. But the basic algorithm
remains unchanged.

4. Experiments and Conclusions

In the previous sections our discussion has been independent of the interconnection
topology of the multiprocessor. Our objective has been to distribute the workload
uniformly and to reduce the amount of communication that must be performed. In this
section we report some experimental results obtained from an implementation of our
algorithm running on a binary hypercube multiprocessor. For background information
about hypercube multiprocessors. see [8] and the references contained therein.

-. 1-1

.4

- 11 -

In order to test our implementation. and to gain some information on communication
traffic, we solved some finite element problems derived from a sequence of L-shaped

triangular meshes described in [10]. The ordering used for these problems was an
automatic nested dissection ordering produced by the algorithm described in [10]. The
Tcol (i) tasks were assigned to the processors in a simple serial wrap-around manner, with
no account whatsoever being taken of the underlying topology of the hypercube
multiprocessor. Both the ordering and the symbolic factorization phases were done in
serial mode. Parallel versions of these algorithms are under development.

Our experiments were conducted using a binary hypercube simulator written by T.
H. Dunigan of the Oak Ridge National Laboratory. For details about the simulator, see
[4].

Statistics on both the logical and physical communication for one of the problems
were collected, as shown in the tables that follow. The results reported are typical of
those found in experiments for other problems in the set of nine problems in [10]. The
entry in row r and column c of each table is the amount of data traffic from the processor
corresponding to row r to the one corresponding to column c. Thus. the entries in the last
row of the tables represent traffic from the host processor to the individual node
processors.

We have included both communication counts and volume in the statistics.
Communication count simply refers to the number of messages sent. Note that a message
associated with the nonzeros of a column includes the number of nonzeros. the subscript
information and the actual nonzero values. The volumes reported are the total number of

bytes transmitted. In the experiments, an integer requires 4 bytes, and a floating point
number requires 8 bytes.

0 1 2 3 4 5 6 7 Host

0 106 121 115 107 111 106 106 100 126

1 108 100 120 108 107 100 100 101 127

2 108 102 99 118 112 105 100 98 126

3 105 105 104 99 120 112 109 104 126

4 99 103 102 99 93 120 113 103 126

5 110 106 98 97 90 95 118 106 126

6 116 112 107 102 100 97 94 117 126

7 118 116 113 101 110 103 98 97 126

Host 127 128 127 127 127 127 127 127 0

Table 1: Logical communication counts among 8 processors for n = 1009.

* s"Jt. *, f~rC 4' %U ~ ,, !%

- 12-

0 1 2 3 4 5 6 7 Host

0 31692 33576 32916 31656 32412 31776 31716 30972 34116

1 30504 29232 32040 30408 30540 29748 29724 29748 32724

2 30864 30048 29484 32088 31524 30552 29868 29676 33096

3 30768 30828 30720 30072 32640 31500 31260 30528 33420

4 29664 30180 30108 29628 28884 32160 31248 29988 32928

5 30552 30060 29076 28944 27996 28536 31464 30024 32364

6 32028 31656 31032 30252 30216 29688 29100 32088 33240

7 32496 32244 31848 30336 31536 30600 29832 29856 33372

Host 42224 40832 41204 41528 41036 40472 41348 41480 0

Table 2: Logical communication volume among 8 processors for n -1009.

0 1 2 3 4 5 6 7 Host

0 106 438 423 0 423 0 0 0 126

1 441 100 0 423 0 408 0 0 127

2 438 0 99 426 0 0 415 0 126

3 0 444 435 99 0 0 0 445 126

4 403 0 0 0 93 428 422 0 126

5 0 411 0 0 427 95 0 425 126

6 0 0 437 0 414 0 94 418 126

7 0 0 0 448 0 445 425 97 126

Host 127 128 127 127 127 127 127 127 0

Table 3: Physical communication counts for 8 processors and n -1009.

- 13-

0 1 2 3 4 5 6 7 Host

0 31692 125460 124308 0 126876 0 0 0 34116

1 124320 29232 0 120468 0 119760 0 0 32724

2 124596 0 29484 123624 0 0 121620 0 33096

3 0 126336 123684 30072 0 0 0 125928 33420

4 119580 0 0 0 28884 124176 123924 0 32928

5 0 118632 0 0 122712 28536 0 120960 32364

6 0 0 124968 0 121980 0 29100 122724 33240

7 0 0 0 126924 0 126276 122280 29856 33372

Host 42224 40832 41204 41528 41036 40472 41348 41480 0

Table 4: Physical communication volume among 8 processors for n -1009.

There are several noteworthy aspects of the numbers in Tables 1-4. First. observe
that the logical communication is quite evenly distributed among all the processors. That
is. the algorithm generates about the same amount of traffic between any and every pair of
processors.

Entries in the logical communication tables associated with the processor nodes are all
nonzero. However, there are a number of zero entries in the physical communication table.
Indeed. each zero in the tables (except for the "'Host" row and column) means that a
physical link does not exist between the two associated processors. For example. there is
no direct link between processors 0 and 3. The messages from processor 0 to 3 must be
directed through an intermediate processor. processor 1. This will have the effect of
increasing the physical traffic from processor 0 to 1 and from processor 1 to 3. This
explains why the nonzero entries in the physical communication tables are much larger
than the corresponding entries in the logical communication tables.

Furthermore. it is interesting to observe that the actual physical links in the
hypercube topology all carry about the same amount of traffic. Thus. it would appear that
this particular topology adequately supports the actual (logical) traffic generated by the
algorithm, at least for this class of sparse problems.

In order to determine what our implementation achieved in actual speed-up, we ran
our code using one processor and eight processors, and in addition we ran the best serial
code we have available.

A comparison of the times for the serial code and the parallel code with one processor
was done to assess the cost incurred in the parallel implementation per se. It is
noteworthy that the penalty is quite substantial, in the neighborhood of 25 percent. This
is different from experience with solving dense systems on multiprocessors. where the
performance of the best serial code and the parallel code running on one processor are
comparable [8]. This is to be expected for the dense case. since the parts of the codes
where the majority of the computation is done are identical. However, serial codes for
sparse Cholesky factorization gain important performance advantages through heavy use
of context. For example, efficient processing and storage of a column depend on rapid and
direct access to information about certain selected previous columns. This context is

L 2 .*'*.~-- -

-14-

inevitably lost in a parallel implementation. since the columns are distributed among
many processors, and the use of such context would almost certainly require prohibitive
amounts of communication. Thus, the data structures and computational schemes used in
the serial and parallel implementations are quite different.

Another aspect of parallel sparse matrix computations that tends to make them less
efficient than their dense counterparts is that the associated messages in sparse parallel
implementations tend to be shorter. The time required to transmit a message from one
processor to another typically involves a fixed startup time plus a cost proportional to the
message length. It is therefore desirable to have a few large messages rather than many
small ones in parallel computations, but this is difficult to achieve for sparse matrix
computations.

The results of our experiments are contained in Table 5. Note that the "time"
reported is artificial. The simulator measures time simply as the number of machine
instructions executed, with no distinction being made between the relative cost of
executing instructions of different types.

RESULTS ON SPEED-UP

n serial one processor eight processors

time time speed-up time speed-up

265 719606 1027215 .70 285614 2.52
406 1462056 2005731 .73 484443 3.02
577 2567430 3454271 .74 776278 3.31
778 4022592 5357658 .75 1120536 3.59
1009 6112334 8060091 .76 1591583 3.84

Table 5: Speed-up for one processor and 8-processor configurations.

5. References

[1] I.S. Duff. "Full matrix techniques in sparse Gaussian elimination", in Lecture Notes in
Mathematics (912). ed. G.A. Watson. Springer-Verlag (1982).

[21 I.S. Duff, "Parallel implementation of multifrontal schemes". Technical
Memorandum No. 49. Mathematics and Computer Science Division, Argonne National
Laboratory. Argonne. IL (March 1985).

[31 I.S. Duff and J.K. Reid. "The multifrontal solution of indefinite sparse symmetric
linear equations". ACM Trans. on Math. Software 9. pp.3 0 2 -3 2 5 (1983).

[41 T.H. Dunigan, "A message-passing multiprocessor simulator". Technical report
ORNL/TM-9966. Mathematical Sciences Section. Oak Ridge! National Laboratory. Oak
Ridge. TN (1986).

[5] S.C. Eisenstat, M.C. Gursky. M.I.. Schultz. and A.H. Sherman. "The Yale sparse
matrix package. I. the symmetric codes". Internat. J. Nuner. Meth. Engrg. 18.
pp.1145-1151 (1982).

[61 S.C. Eisenstat. M.H. Schultz. and A.T. Sherman, "Applications of an element model
for Gaussian elimination", in parse Matrix Computations. ed. J.E. Bunch and D.J.

- 15-

Rose. Academic Press. pp.85 -9 6 (1976).

[71 S.C. Eisenstat. M.11. Schultz. and A.H. Sherman, "Software for sparse Gaussian
elimination with limited core storage". in Sparse Matrix Proceedings 1978, ed. I.S.
Duff and G.W. Stewart, SIAM Press. pp.13 5- 153 (1979).

[8] G.A. Geist and M.T. Heath. "Parallel Cholesky factorization on a hypercube
multiprocessor". Technical Report ORNL-6190. Mathematical Sciences Section, Oak
Ridge National Laboratory, Oak Ridge. Tennessee (1985).

[9] J.A. George. M.T. Heath. and J.W-H. Liu. "Parallel Cholesky factorization on a
multiprocessor". Research Report CS-84-49, Department of Computer Science.
University of Waterloo. Waterloo. Ontario. Canada (1984).

[10] J.A. George and J.W-H.Liu. "An automatic nested dissection algorithm for irregular
finite element problems". SIAM 1. Numer. Anal. 15. pp.1053-1069 (1978).

[11] J.A George and J.W-H. Liu. "The design of a user interface for a sparse matrix
package". ACM Trans. on Math. Software 5, pp. 1 3 4 - 1 6 2 (1979).

[12] J.A. George and J.W-H. Liu, "An optimal algorithm for symbolic factorization of
symmetric matrices". SIAM J. Comput. 9. pp.5 8 3- 59 3 (1980).

[131 M.T. Heath. "Parallel Cholesky factorization in message passing multiprocessor
environments". Technical Report ORNL-6150. Mathematical Sciences Section, Oak
Ridge National Laboratory. Oak Ridge, Tennessee (1985).

[14] J.A.G. Jess and H.G.M. Kees, "A data structure for parallel L/U decomposition".
IEEE Trans. Comput. C-31. pp.2 3 1 -2 3 9 (1982).

[15) J.W-H. Liu. "Modification of the minimum degree algorithm by multiple
elimination". ACM Trans. on math. Software 11, pp. 14 1 - 1 53 (1985).

[16] J.W-H. Liu, "A compact row storage scheme for sparse Cholesky factors using
elimination trees". ACM Trans. on Math. Software (1986). (To appear.)

[17] J.W-H. Liu. "On general row merging schemes for sparse Givens transformations".
SIAM J. Sci. Stat. Comput. (1986). (To appear).

[18] J.W-H. Liu. "Computational models and task scheduling for parallel sparse Cholesky
factorization". Parallel Computing (1986). (To appear.)

[19] F.J. Peters. "Sparse matrices and substructures". Mathematical Centre Tracts 119.
Mathematisch Centrum. Amsterdam. The Netherlands (1980).

[20] R. Schreiber, "'A new implementation of sparse Gaussian elimination". ACM Trans. on
Math. Software 8. pp.256-276 (1982).

A A A -!..

npb ~qFV'7VMJPU.. V -wo

-17-

ORNL/TM-9962

INTERNAL DISTRIBUTION

1. L. S. Abbott 25. R. C. Ward
2. J. B. Drake 26. C. R. Weisbin
3. T. H. Dunigan 27. D. G. Wilson

4. E. L. Frome 28. A. Zucker
5. G. A. Geist 29. P. W. Dickson (Consultant)
6. L. J. Gray 30. G. H. Golub (Consultant)

7-8. R. F. Harbison 31. R. M. Haralick (Consultant)
9-13. M. T. Heath 32. D. Steiner (Consultant)

14. W. E. Lever 33. Central Research Library
15. F. C. Maienschein 34. K-25 Plant Library
16. T. J. Mitchell 35. ORNL Patent Office
17. M. D. Morris 36. Y-12 Technical Library

18-22. E. G. Ng /Document Reference Station
23. G. Ostrouchov 37. Laboratory Records - RC
24. V. R. R. Uppuluri 38-39. Laboratory Records Department

EXTERNAL DISTRIBUTION

40. Dr. Donald M. Austin. Office of Scientific Computing. Office of Energy Research, ER-7.
Germantown Building, U.S. Department of Energy, Washington, DC 20545

41. Dr. Robert G. Babb. Department of Computer Science and Engineering, Oregon
Graduate Center. 19600 N.W. Walker Road. Beaverton. OR 97006

42. Dr. Jesse L. Barlow. Department of Computer Science, Pennsylvania State University.
University Park, PA 16802

43. Prof. Ake Bjorck. Department of Mathematics. Linkoping University, Linkoping
58183. Sweden

44. Dr. James C. Browne. Department of Computer Sciences, University of Texas. Austin.
TX 78712

45. Dr. Bill L. Buzbee. C-3. Applications Support & Research. Los Alamos National
Laboratory. P.O. Box 1663. Los Alamos, NM 87545

46. Dr. Donald A. Calahan. Department of Electrical and Computer Engineering,
University of Michigan, Ann Arbor, MI 48109

47. Dr. Tony Chan. Department of Computer Science. Yale University. P.O. Box 215h
Yale Station, New Haven. CT 06520

48. Dr. Jagdish Chandra, Army Research Office, P.O. Box 12211. Research Triangle Park.
North Carolina 27709

49. Dr. Paul Concus. Mathematics and Computing. Lawrence Berkeley Laboratory.
Berkeley. CA 94720

% • . .*: - ,% .- *

-18-

50. Dr. Jane K. Cullum. IBM T. J. Watson Research Center, P.O. Box 218. Yorktown
Heights. NY 10598

51. Dr. George Cybenko. Department of Computer Science. Tufts University. Medford,
MA 02155

52. Dr. George J. Davis. Department of Mathematics. Georgia State University. Atlanta,

GA 30303

53. Dr. Jack J. Dongarra. Mathematics and Computer Science Division, Argonne National
Laboratory. 9700 South Cass Avenue. Argonne, IL 60439

54. Dr. Stanley Eisenstat. Department of Computer Science. Yale University, P.O. Box
2158 Yale Station. New Haven. CT 06520

55. Dr. Howard C. Elman. Computer Science Department. University of Maryland,
College Park. MD 20742

56. Dr. Albert M. Erisman. Boeing Computer Services, 565 Andover Park West, Tukwila,
WA 98188

57. Dr. Geoffrey C. Fox. Booth Computing Center 158-79. California Institute of
Technology. Pasadena. CA 91125

58. Dr. Paul 0. Frederickson. Computing Division. Los Alamos National Laboratory. Los
Alamos. NM 87545

59. Dr. Fred N. Fritsch. L-300. Mathematics and Statistics Division. Lawrence Livermore
National Laboratory. P.O. Box 808. Livermore, CA 94550

60. Dr. Robert E. Funderlic. Department of Computer Science, North Carolina State
University. Raleigh. NC 27650

61. Dr. Dennis B. Gannon. Computer Science Department. Indiana University.
Bloomington. IN 47405

62. Dr. David M. Gay. Bell Laboratories. 600 Mountain Avenue. Murray Hill, NJ 07974

63. Dr. C. William Gear. Computer Science Department. University of Illinois. Urbana.
Illinois 61801

64. Dr. W. Morven Gentleman. Division of Electrical Engineering. National Research
Council. Building M-50, Room 344, Montreal Road. Ottawa. Ontario. Canada kIA
OR8

65. Dr. J. Alan George. Department of Computer Science. University of Waterloo.
Waterloo. Ontario. Canada N2L 3GI

66. Prof. Gene H. Golub. Department of Computer Science. Stanford University.

Stanford. CA 94305

67. Dr. Joseph F. Grcar. Division 8331. Sandia National Laboratories. Livermore. CA
94550

68. Dr. Don E. Heller. Physics and Computer Science Department, Shell Development Co.,
P.O. Box 481. Houston. TX 77001

69. Dr. Robert E. Huddleston. Computation Department. Lawrence Livermore National
Laboratory, P.O. Box 808. livermore. CA 94550

70. Dr. Ilse Ipsen, Department of Computer Science. Yale University. P.O. Box 2158 Yale
Station. New Haven. CT 06520

-19-

71. Dr. Harry Jordan. Department of Electrical and Computer Engineering, University of
Colorado. Boulder. CO 80309

72. Dr. Linda Kaufman. Bell Laboratories. 600 Mountain Avenue. Murray Hill. NJ 07974

73. Dr. Robert J. Kee. Applied Mathematics Division 8331. Sandia National Laboratories.
Livermore. CA 94550

74. Ms. Virginia Klema. Statistics Center, E40-131. MIT. Cambridge, MA 02139

75. Dr. Richard Lau. Office of Naval Research. 1030 E. Green Street. Pasadena, CA 91101

76. Dr. Alan J. Laub. Department of Electrical and Computer Engineering, University of
California. Santa Barbara. CA 93106

77. Dr. Robert L. Launer. Army Research Office. P.O. Box 12211. Research Triangle Park.
North Carolina 27709

78. Prof. Peter D. Lax. Director, Courant Institute of Mathematical Sciences. New York
University, 251 Mercer Street. New York. NY 10012

79. Dr. Michael R. Leuze. Computer Science Department. Box 1679 Station B, Vanderbilt
University, Nashville, TN 37235

80. Dr. Joseph Liu. Department of Computer Science. York University. 4700 Keele Street.
Downsview. Ontario. Canada M3J 1P3

81. Dr. Franklin Luk. Electrical Engineering Department. Cornell University. Ithaca. NY
14853

82. Dr. Thomas A. Manteuffel. Computing Division. Los Alamos National Laboratory.
Los Alamos, NM 87545

83. Dr. Paul C. Messina. Applied Mathematics Division. Argonne National Laboratory.
Argonne. IL 60439

84. Dr. Cleve Moler. Intel Scientific Computers. 15201 N.W. Greenbrier Parkway,
Beaverton, OR 97006

85. Dr. Dianne P. O'Leary. Computer Science Department. University of Maryland.
College Park. MD 20742

86. Maj. C. E. Oliver. Office of the Chief Scientist. Air Force Weapons Laboratory.
Kirtland Air Force Base. Albuquerque, NM 87115

87. Dr. James M. Ortega. Department of Applied Mathematics. University of Virginia.
Charlottesville. VA 22903

88. Prof. Chris Paige. Computer Science Department. McGill University. 805 Sherbrooke
Street W.. Montreal. Quebec. Canada H3A 2K6

89. Dr. John F. Palmer. NCUBE Corporation. 915 E. LaVieve Lane. Tempe. AZ 85284

90. Prof. Beresford N. Parlett. Department of Mathematics. University of California.
Berkeley. CA 94720

91. Prof. Merrell Patrick. Department of Computer Science. Duke University. Durham,
NC 27706

92. Dr. Robert J. Plemmons. Departments of Mathematics and Computer Science, North
Carolina State University. Raleigh. NC 27650

93. Dr. John K. Reid. CSS Division, Building 8.9. AERE Harwell. Didcot. Oxon, England
OX11 ORA

- .'W .- -:67X..X. -777

-20-

94. Dr. John R. Rice. Computer Science Department. Purdue University, West Lafayette.
IN 47907

95. Dr. Garry Rodrigue. Numerical Mathematics Group. Lawrence Livermore Laboratory.
Livermore. CA 94550

96. Dr. Donald J. Rose, Department of Computer Science. Duke University, Durham. NC
27706

97. Dr. Milton E. Rose, Director. ICASE. M/S 132C, NASA Langley Research Center,
Hampton. VA 23665

98. Dr. Ahmed H. Sameh. Computer Science Department. University of Illinois. Urbana.
IL 61801

99. Dr. Michael Saunders. Systems Optimization Laboratory. Operations Research
Department. Stanford University. Stanford, CA 94305

100. Dr. Robert Schreiber, Department of Computer Science, Rensselaer Polytechnic
Institute. Troy. NY 12180

101. Dr. Martin H. Schultz. Department of Computer Science. Yale University. P.O. Box
2158 Yale Station. New Haven. CT C6520

102. Dr. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway.
Beaverton. OR 97006

103. Dr. Lawrence F. Shampine, Numerical Mathematics Division 5642. Sandia National
Laboratories. P.O. Box 5800, Albuquerque. NM 87115

104. Dr. Danny C. Sorensen. Center for Supercomputing Research and Development. 305
Talbot Laboratory. University of Illinois. 104 South Wright Street. Urbana. IL
61801-2932

105. Prof. G. W. Stewart. Computer Science Department. University of Maryland. College
Park, MD 20742

106. Capt. John P. Thomas. Air Force Office of Scientific Research. Building 410, Bolling
Air Force Base. Washington. DC 20332

107. Prof. Charles Van Loan, Department of Computer Science. Cornell University. Ithaca.
NY 14853

108. Dr. Robert G. Voigt. ICASE. MS 132-C. NASA Langley Research Center. Hampton,
VA 23665

109. Dr. Andrew B. White. Computing Division. Los Alamos National Laboratory. Los
Alamos, NM 87545

110. Dr. James H. Wilkinson. Division of Numerical Analysis and Computer Science.

National Physical Laboratory. Teddington. Middlesex TWll OLW. England

111. Mr. Patrick H. Worley, Computer Science Department. Stanford University. Stanford,
CA 94305

112. Dr. Arthur Wouk, Army Research Office, P.O. Box 12211. Research Triangle Park.
North Carolina 27709

113. Dr. Margaret Wright. Systems Optimization Laboratory, Operations Research
Department, Stanford University. Stanford. CA 94305

114. Office of Assistant Manager for Energy Research and Development. Department of
Energy, Oak Ridge Operations Office. Oak Ridge. TN 37830

115-141. Technical Information Center

.p • o . • o • o • .p •2 '. - .

___________wMW A1 'MR U*TWLW W. AU -. r PdV7 . jU.r- I -jU-vjUir-w-(x-xT W .v7 W - W

Fj

J. 7 -1. -.e 1 . 'r ..-

